Категории раздела

Наш опрос

Что Вас Привлекает в лазерной операции в Тольятти?
Всего ответов: 692
Главная » Статьи » Мои статьи

История и развитие коррекции зрения

Очки и контактные линзы, являясь основными средствами коррекции различных видов аметропий (аномалий рефракции), не всегда полностью способны обеспечить максимально чёткое фокусирование изображения на сетчатке.

Так очковая коррекция высоких степеней аметропий в ряде случаев мало эффективна. В случае близорукости (миопии) высокой степени – свыше -6D - коррегирующие очковые линзы, позволяющие добиться наилучшей остроты зрения, как правило плохо переносимы пациентом, в результате чего ему назначается более слабая очковая коррекция, не позволяющая обеспечить высокие зрительные функции. Очковая коррекция дальнозоркости (гиперметропии) высокой степени (больше +5D) сопровождается увеличением изображения предметов на глазном дне, искажением их формы, нарушением цветопередачи и поля зрения за счёт «призматического эффекта» линз. При разности между глазами свыше 2.0D (анизометропия) коррекция обоих глаз очковыми линзами практически полностью исключается.

Контактная коррекция обеспечивает высокие функциональные результаты, нивелируя многие оптические недостатки очковых линз. Благодаря этому контактные линзы получили широкое распространение в коррекции аметропий различных степеней. Однако длительное ношение контактных линз даже с высоким показателем содержания воды (гидрофильности) зачастую ограничено риском развития осложнений со стороны роговицы, связанных с их частым загрязнением и инфицированием, ухудшающейся экологией и ненадлежащим уходом за ними. Также, хотелось бы отметить, что 15-17% людских глаз не переносят вообще контактную коррекцию и есть ограничения у ряда лиц (по общесоматическому статусу, профессиональные и др.). Интраокулярная коррекция различных аметропий возможна путём экстракции прозрачного хрусталика при миопии высокой степени, имплантации интраокулярной линзы (ИОЛ) при коррекции гиперметропии вследствие афакии или имплантации т.н. «положительных ИОЛ». Однако интраокулярные способы коррекции аметропий сопряжены с риском развития тяжёлых осложнений, таких как вторичная глаукома, выпадение стекловидного тела, отслойка сетчатки, эндотелиально-эпителиальные дистрофии роговицы, дислокация линз и т.д. Многие пациенты интересуются давно ли делают роговичные операции по коррекции зрения и сколько велик набранный опыт. Поэтому разговор о рефракционной хирургии нужно начать с истории.

Использование роговичных надрезов началось в 19 веке. Первые документально подтвержденные данные об операциях не сохранились, однако известно, что Герман Снеллен (создатель таблиц для проверки зрения) описал хирургические операции для исправления астигматизма в 1869 году.

В 1949 году Колумбийский офтальмолог Барракер, разработал операцию под названием кератомилез. Используя специальный инструмент - микрокератом, он аккуратно срезал верхушку роговицы, затем замораживал ее, на специальном станке придавал ей нужную форму и пришивал на место. Пациентам приходилось ждать стабилизации зрения по 3-6 месяца, поэтому эта операция широкого распространения не получила. Тем не менее, были заложены основы для современных кераторефракционных (изменяющих кривизну основной оптической линзы глаза - роговицы «кератос») операций.

В 1953 году японский офтальмолог Сато разработал новую операцию для коррекции миопии – заднюю радиальную кератотомию. Он наносил до 64 надрезов с внутренней стороны роговицы, в результате чего она становилась более плоской, и зрение восстанавливалось. К сожалению, при этой операции повреждался эндотелий роговицы (сейчас известно, что он не восстанавливается), это приводило к ее помутнению во всех случаях. В результате от этой операции отказались.

После смерти Сато и его последователей хирургия близорукости в Японии пошла на спад и возобновилась в СССР. В 1973 году С.Федоров и его коллеги внесли значительный вклад в развитие техники передней радиальной кератотомии (так называемые – «насечки» или ПРК). Смысл операции технически прост – на периферической части роговицы (в отличие от методики Сато, снаружи) наносили от 4 до 16 надрезов. В результате роговица в центральной части становилась более плоской, позволяя корригировать близорукость и астигматизм. ПРК использовался для коррекции миопии от 1.5 D до 8.0 D, перед началом лечения возможно было прогнозирование конечного результата по созданной многофакторной формуле расчёта (Фёдоров С.Н. 1992). Нельзя не отметить факт снижения механической прочности роговицы при ПРК, процесс заживления рубцов непредсказуем, что приводило к отклонениям от расчетного результата. Все это стало снижать интерес к данной операции особенно в связи с появившимися новыми лазерными технологиями в кераторефракционной хирургии.

Дальнейшее развитие рефракционной хирурги ознаменовалось появлением эксимерных лазеров и в дальнейшем современных микрокератомов. Эксимерными называют лазеры, в которых источником излучения являются возбуждённые частицы – эксимеры (excited – возбуждённый, dimer – димер). Применение в биологии и медицине нашли лазерные установки, в которых источником излучения являются эксимеры, образующиеся при взаимодействии атомов разряженного газа с молекулами галогена. При этом атом разряженного газа действует как соответствующий щелочной металл и становится реактивным в присутствии молекул галогена. С точки зрения лазерной физики термин «эксимер» не точен, так как димер подразумевает пару одинаковых атомов и данную молекулярную конфигурацию следует называть «exciplex». Однако вопреки неполной корректности термин получил широкое распространение.

Использующие этот принцип лазеры впервые были разработаны в 1975 году. В качестве активной среды, генерирующей в лазерных установках ультрафиолетовое (УФ) излучение различного диапазона, были использованы различные комбинации разряженного газа и галогена. С помощью излучения эксимерных лазеров возможно с большой точностью удалять субмикроскопические частицы в различных биоматериалах. В основе этого явления лежит эффект фотодекомпрессии, обусловленный воздействием УФ фотонов. Энергия последних достаточна для разрушения молекулярных и внутримолекулярных связей, вплоть до распада на отдельные атомы. Так, например, при длине волны 193 нм УФ фотоны имеют достаточно большую энергию. Было установлено, что органические полимеры сильно абсорбируют дальний УФ, ограничивая этим глубину его проникновения. Обладая высокой энергией, УФ фотоны в месте поглощения разрушают молекулярные связи, что приводит к образованию большого числа мелких фрагментов в малом объеме, повышению давления и их удалению («испарению» - абляции). Точность фотоабляции хорошо заметна при рассмотрении под микроскопом человеческого волоса, на котором нанесены очень точные прямоугольные насечки эксимерным лазером.

Впервые Taboado и Archibald в 1981 году заметили образование углублений на роговице при воздействии на нее ультрафиолетовым излучением эксимерного лазера. Лишь спустя два года в 1983 появилось первое сообщение Trokel с соавт. о возможности использования излучения эксимерного лазера для точных, контролируемых по глубине хирургических вмешательств на роговой оболочке с целью коррекции зрения. Лазерное направление в рефракционной хирургии глаза увенчалось разработкой фоторефракционной кератэктомии, сокращенно ФРК. Метод ФРК применяется с 1983 г. по сей день, постоянно модернизируясь. ФРК с одной стороны серьезный шаг вперед по сравнению с передней радиальной кератотомией, а с другой стороны, по отношению к роговице, не самый безопасный метод. Список типичных осложнений после ФРК включает полтора десятка пунктов, хотя в целом процент и степень выраженности их ничтожно малы (по разным данным от 2 до 14%) по сравнению со всеми использумыми до него «роговичными» операциями.
 

Внедрение в клиническую практику эксимерного лазера позволило совершить технологический прорыв в оперативной коррекции зрения. Луч эксимерного лазера чрезвычайно точно и бережно воздействует на роговицу глаза. Лазер «испаряет» ткань роговицы всего на 1/8 ее толщины. Современные компьютерные установки для эксимер-лазерной коррекции зрения позволяют получить настолько "идеальный новый заданный профиль" роговицы, что стало возможным исправление практически всех видов и степеней патологии рефракции. Говоря научным языком, эксимерные лазеры - высокоточные системы, обеспечивающие необходимую "фотохимическую абляцию" (испарение) слоев роговицы. Если ткань удаляется в центральной зоне, то роговица становится более плоской, что исправляет близорукость. Если же испарить периферическую часть роговицы, то ее центр станет более "крутым", что позволяет корригировать дальнозоркость. Дозированное удаление в разных меридианах роговицы позволяет исправлять астигматизм.



Источник: http://www.bolezni-glaz.ru/
Категория: Мои статьи | Добавил: docDrawd (08.02.2011)
Просмотров: 1878 | Комментарии: 1 | Рейтинг: 4.0/10
Всего комментариев: 1
1  
Спасибо хотелось-бы узнать о способах профилактики близороукости... Правда, что: Правильное распределение в течение дня занятий и отдыха в соответствующих норме санитарно-гигиенических условиях, отведение достаточного времени для прогулок и спорта, нормального сна создают оптимальные условия для работы органа зрения, благотворно влияют на организм и являются мерами профилактики близорукости?

И зачем необходимо начиная с раннего дошкольного возраста, выработать у детей правильный "рефлекс чтения" (буквы, картинки не ближе 30 см от глаз)? Почему развивается рефлекс "склоненной головы", что способствует развитию близорукости и сколиоза?

Надо-ли ежегодно проверять остроту зрения, следует-ли следить за правильной посадкой во время чтения, письма?

Мне кажется большое внимание следует уделять детям со спазмами аккомодации, при которых возникает ложная близорукость. "Разрешение" спазмов аккомодации возможно при помощи специальных упражнений а не в закапывании лекарственных препаратов! Читайте Норбекова - он рекомендует лечение без препаратов, а только усилием воли!
Повидимому маятнику медицины необходимо увеличение жалоб на здоровье.


Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]